Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.4.23 *Printed on 13 January 2020 at 15:41:32*

Project Information:

Assessed By: Mitchel Armitage-Neiles (STRO029948) Building Type: Mid-terrace House

Dwelling Details:

NEW DWELLING DESIGN STAGETotal Floor Area: 82.76m²

Site Reference: Fishers Farm (Phase 2) Plot Reference: Plot 116 Dart [Mid] DCC3

Address:

Client Details:

Name: Redrow Homes South East

Address:

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER) 17.06 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER) 15.75 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 45.7 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 38.4 kWh/m²

OK.

2 Fabric U-values

Element	Average	Highest	
External wall	0.28 (max. 0.30)	0.28 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	0.12 (max. 0.25)	0.12 (max. 0.70)	OK
Roof	0.11 (max. 0.20)	0.11 (max. 0.35)	OK
Openings	1.29 (max. 2.00)	1.50 (max. 3.30)	OK

2a Thermal bridging

Thermal bridging calculated using user-specified y-value of 0.15

Reference: Measured

3 Air permeability

Air permeability at 50 pascals 5.01 (design value)

Maximum 10.0

4 Heating efficiency

Main Heating system: Database: (rev 454, product index 017929):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Ideal Model: LOGIC COMBI Model qualifier: ESP1 35

(Combi)

Efficiency 89.6 % SEDBUK2009

Minimum 88.0 % OK

OK

Regulations Compliance Report

Secondary heating system: None

5 Cylinder insulation

Hot water Storage: No cylinder

6 Controls

Space heating controls Programmer, room thermostat and TRVs OK

Hot water controls: No cylinder thermostat

No cylinder

Boiler interlock: Yes OK

7 Low energy lights

Percentage of fixed lights with low-energy fittings 100.0%

Minimum 75.0%

OK

8 Mechanical ventilation

Not applicable

9 Summertime temperature

Overheating risk (South East England):

Not significant

OK

Based on:

Overshading: Average or unknown

Windows facing: North East 4.76m²
Windows facing: South West 3m²
Windows facing: South West 5.22m²
Ventilation rate: 8.00
Blinds/curtains: None

10 Key features

Doors U-value1.1 W/m²KRoofs U-value0.11 W/m²KParty Walls U-value0 W/m²KFloors U-value0.12 W/m²K

Code for Sustainable Homes Report

For use with Nov 2010 addendum 2014 England

Assessor and House Details

Assessor Name: Mitchel Armitage-Neiles Assessor Number: STRO029948

Property Address:

Building regulation assessment

 kg/m²/year

 TER
 17.06

 DER
 15.75

ENE 1 Assessment - Dwelling Emission Rate

Total Energy Type CO₂ Emissions for Codes Levels 1 - 5

	%	kg/m²/year	
DER from SAP 2012 DER Worksheet		15.75	(ZC1)
TER		17.06	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		15.75	
% improvement DER/TER	7.7		

Total Energy Type CO2 Emissions for Codes Levels 6

	kg/m²/year	
DER accounting for SAP Section 16 allowances	15.75	(ZC1)
CO2 emissions from appliances, equation (L14)	16.06	(ZC2)
CO2 emissions from cooking, equation (L16)	2.17	(ZC3)
Net CO2 emissions	36	(ZC8)

Result:

Credits awarded for ENE 1 = 1.2

Code Level = 3

ENE 2 - Fabric energy Efficiency

Fabric energy Efficiency: 38.39 Credits awarded for ENE 2 = 7.2

ENE 7 - Low or Zero Carbon (LZC) Technologies

Reduction in CO2 Emissions

	%	kg/m²/year
Standard Case CO2 emissions		35.98
Standard DER		17.76
Actual Case CO2 emissions		35.98
Actual DER		17.76

Reduction in CO2 emissions

Credits awarded for ENE 7 = 0

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

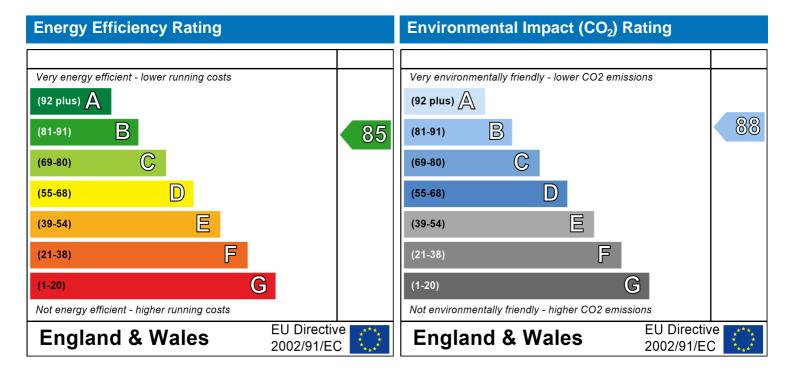
The following requirements must also be met

- Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.
- Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified.
- Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.
- · All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPQA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.

0


Predicted Energy Assessment

Dwelling type: Date of assessment: Produced by: Total floor area: Mid-terrace House 01 August 2019 Mitchel Armitage-Neiles 82.76 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Property Details: Plot 116 Dart [Mid] DCC3

Address:

Located in: England

Region: South East England

UPRN:

Date of assessment: 01 August 2019
Date of certificate: 13 January 2020

Assessment type: New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

Water use <= 125 litres/person/day:

New dwelling
Unknown

No related party
Calculated 137.87

PCDF Version: 454

Property description:

Dwelling type: House
Detachment: Mid-terrace
Year Completed: 2019

Floor Location: Floor area:

Floor 0 41.38 m² 2.31 m Floor 1 41.38 m² 2.61 m

Living area: 14.96 m² (fraction 0.181)

Front of dwelling faces: North East

Opening types:

Name:	Source:	Type:	Glazing:	Argon:	Frame:
Door	Manufacturer	Solid	low-E, $En = 0.2$, hard coat	Yes	PVC-U
Front	Manufacturer	Windows	low-E, $En = 0.2$, hard coat	Yes	
Rear	Manufacturer	Windows	low-E, $En = 0.2$, hard coat	Yes	
Patio	Manufacturer	Windows	low-E, $En = 0.2$, hard coat	Yes	

Name:	Gap:	Frame Fa	actor: g-value:	U-value:	Area:	No. of Openings:	
Door	16mm or more mm	0.7	0.72	1.1	2.05	1	
Front	16mm or more	0.7	0.72	1.2	4.76	1	
Rear	16mm or more	0.7	0.72	1.2	3	1	
Patio	16mm or more	0.7	0.72	1.5	5.22	1	

Name: Door	Type-Name:	Location: Walls	Orient: North East	Width: 0	Height: 0
Front		Walls	North East	0	0
Rear		Walls	South West	0	0
Patio		Walls	South West	0	0

Overshading: Average or unknown

Onaque Flements

Туре:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Element	<u>ts</u>						
Walls	65.91	15.03	50.88	0.28	0	False	48
External Roof	41.38	0	41.38	0.11	0		9
Floor	41.38			0.12			75
Internal Element	<u>s</u>						
Stud	137.01						9
Ceiling	41.38						9

SAP Input

Floor 41.38 18

Party Elements

Party Wall 65.45

Thermal bridges:

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0432

Length	Psi-value		
9.7	0.236	E1	Steel lintel with perforated steel base plate
6.23	0.01	E3	Sill
20.1	0.005	E4	Jamb
18.19	0.089	E5	Ground floor (normal)
9.16	-0.002	E6	Intermediate floor within a dwelling
9.16	0.053	E10	Eaves (insulation at ceiling level)
15.06	0.041	E18	Party wall between dwellings
4.62	0.051	E16	Corner (normal)
9.08	0.043	P1	Ground floor
18.16	0.035	P4	Roof (insulation at ceiling level)

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 3
Number of passive stacks: 0
Number of sides sheltered: 2
Pressure test: 5.01

Main heating system:

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 454, product index 017929) Efficiency: Winter 87.3 % Summer: 90.5

Brand name: Ideal Model: LOGIC COMBI Model qualifier: ESP1 35

(Combi boiler)

Systems with radiators

Central heating pump: 2013 or later

Design flow temperature: Design flow temperature >45°C

Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Programmer, room thermostat and TRVs

Control code: 2106

Secondary heating system:

Secondary heating system: None

Water heating:

Water heating: From main heating system

Water code: 901
Fuel :mains gas
No hot water cylinder
Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown

SAP Input

Conservatory: No conservatory

Low energy lights: 100%

Low rise urban / suburban

Terrain type: EPC language: English Wind turbine: No None Photovoltaics: No Assess Zero Carbon Home:

			User D	etails:							
Assessor Name:	Mitchel Armitaç	ge-Neiles		Stroma Number: STRO					0029948		
Software Name:	Stroma FSAP 2	2012		Softwa	are Vei	on: 1.0.4.23					
	Property Address: Plot 116 Dart [Mid] DCC3										
Address :											
Overall dwelling dimens	nsions:		Aro	a(m²)		۸۷ اام	ight(m)		Volume(m³)		
Ground floor					(1a) x		.31	(2a) =	95.59	(3a)	
First floor			4	11.38	(1b) x	2	.61	(2b) =	108	(3b)	
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+	-(1e)+(1r	n)	32.76	(4)					ı	
Dwelling volume					(3a)+(3b))+(3c)+(3d	l)+(3e)+	.(3n) =	203.59	(5)	
2. Ventilation rate:										1	
<u> </u>	main heating	secondar heating	у	other		total			m³ per hour		
Number of chimneys	0 +		+ [0] = [0	X 4	40 =	0	(6a)	
Number of open flues	0 +	0	Ī + Ē	0	Ī = [0	x 2	20 =	0	(6b)	
Number of intermittent far	ns					3	x .	10 =	30	(7a)	
Number of passive vents						0	x ′	10 =	0	(7b)	
Number of flueless gas fir	es					0	X 4	40 =	0	(7c)	
								A : l		_	
Infilmation due to object		(Co) - (Ch) - (7	70) . (7b) . ((7 0)	_				nanges per hou	,	
Infiltration due to chimney If a pressurisation test has be	·				continue fr	30 om (9) to (÷ (5) =	0.15	(8)	
Number of storeys in th			, ,			, , ,	,		0	(9)	
Additional infiltration							[(9)	-1]x0.1 =	0	(10)	
Structural infiltration: 0.	25 for steel or timb	oer frame or	0.35 fo	r mason	ry constr	uction			0	(11)	
if both types of wall are pro deducting areas of openin	•	orresponding to	the great	ter wall are	a (after					-	
If suspended wooden fl	• / .	sealed) or 0	.1 (seale	ed), else	enter 0				0	(12)	
If no draught lobby, ent	er 0.05, else enter	0							0	(13)	
Percentage of windows	and doors draugh	nt stripped							0	(14)	
Window infiltration				0.25 - [0.2	! x (14) ÷ 1	00] =			0	(15)	
Infiltration rate				(8) + (10)	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)	
Air permeability value,	q50, expressed in	cubic metre	s per ho	our per s	quare m	etre of e	nvelope	area	5.01000022888184	(17)	
If based on air permeabili	ty value, then (18)	= [(17) ÷ 20]+(8), otherw	ise (18) =	(16)				0.4	(18)	
Air permeability value applies	s if a pressurisation tes	t has been dor	ne or a de	gree air pe	rmeability	is being u	sed			-	
Number of sides sheltered	d			(20) 4	[0 07E v /4	0)1			2	(19)	
Shelter factor				` '	[0.075 x (1	9)] =			0.85	(20)	
Infiltration rate incorporati	•			(21) = (18) x (20) =				0.34	(21)	
Infiltration rate modified for Jan Feb	 	eed ay Jun	Jul	Λα	Sep	Oct	Nov	Dec	7		
		ay Juli	l Jui	Aug	l Seb	l Oct	INOV	l Dec]		
Monthly average wind spe	1	2 20	20	2.7	4	42	15	17	1		
(22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7]		

Wind Factor (2	22a)m =	(22)m ÷	4										
(22a)m= 1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]	
							4		!	!	•	J	
Adjusted infilt		- `				` 	` 	` ´	T	I	T	1	
0.43 Calculate effe	0.42 ctive air	0.41 change	0.37 rate for t	0.36 the appli	0.32 cable ca	0.32 ise	0.31	0.34	0.36	0.38	0.4]	
If mechanic		_										0	(23a)
If exhaust air h	eat pump	using Appe	endix N, (2	23b) = (23a	ı) × Fmv (e	equation (N5)) , othe	rwise (23b) = (23a)			0	(23b)
If balanced wit	h heat reco	overy: effic	eiency in %	allowing f	or in-use f	actor (fror	m Table 4h) =				0	(23c)
a) If balance	ed mech	anical ve	entilation	with he	at recov	ery (MV	HR) (24a	a)m = (2)	2b)m + (23b) × [1 – (23c)	÷ 100]	
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If balance	ed mech	anical ve	entilation	without	heat red	covery (I	MV) (24b	p)m = (22)	2b)m + (23b)		_	
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If whole h				-	-								
<u> </u>	n < 0.5 >	``	· ` `	ŕ	<u> </u>	<u> </u>	Ť	ŕ	· ` `	í –	1	1	(0.1.)
(24c)m = 0	0	0	0	0	0	0	0	0	0	0	0]	(24c)
d) If natural	ventilation m = 1, th			•					0.51				
(24d)m = 0.59	0.59	0.59	0.57	0.57	0.55	0.55	0.5 1 [(2	0.56	0.57	0.57	0.58]	(24d)
Effective air		ļ		<u> </u>				<u> </u>				J	, ,
(25)m= 0.59	0.59	0.59	0.57	0.57	0.55	0.55	0.55	0.56	0.57	0.57	0.58	1	(25)
		I	L	<u> </u>			<u> </u>	I	l	l	<u> </u>	1	
0 11 (1		(]											
3. Heat losse					Not Ar		Hard		A V I I		برامديا		\
3. Heat losse	Gros		paramet Openin m	ıgs	Net Ar A ,r		U-val W/m2		A X U (W/		k-value		A X k «J/K
	Gros	SS	Openin	ıgs		m²	W/m2						
ELEMENT	Gros area	SS	Openin	ıgs	A ,r	m² x	W/m2	2K =	(W/				kJ/K
ELEMENT Doors	Gros area e 1	SS	Openin	ıgs	A ,r	m² x	W/m2	2K = - 0.04] =	(W/ 2.255				(26)
ELEMENT Doors Windows Type	Gros area e 1 e 2	SS	Openin	ıgs	A ,r 2.05	m² x x1 x1	W/m2 1.1 1/[1/(1.2)+	2K = · 0.04] = · 0.04] =	2.255 5.45				(26) (27) (27)
ELEMENT Doors Windows Type Windows Type	Gros area e 1 e 2	SS	Openin	ıgs	A ,r 2.05 4.76	m ²	W/m2 1.1 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.5)+	2K = · 0.04] = · 0.04] =	2.255 5.45 3.44	K)		к і	(26) (27) (27) (27)
ELEMENT Doors Windows Type Windows Type Windows Type	Gros area e 1 e 2 e 3	ss (m²)	Openin m	gs 1 ²	A ,r 2.05 4.76 3 5.22 41.38	m ²	W/m2 1.1 /[1/(1.2)+ /[1/(1.5)+ 0.12	eK = 0.04] = 0.04] = 0.04] = =	(W// 2.255 5.45 3.44 7.39 4.9656	K)	kJ/m²-	K I	(26) (27) (27) (27) (27) (3.5) (28)
ELEMENT Doors Windows Type Windows Type Windows Type Floor	Gros area e 1 e 2 e 3	ss (m²)	Openin m	gs 1 ²	A ,r 2.05 4.76 3 5.22 41.38 50.88	m ²	W/m ² 1.1 /[1/(1.2)+ /[1/(1.5)+ 0.12 0.28	eK = 0.04] = 0.04] = 0.04] =	(W// 2.255 5.45 3.44 7.39 4.9656 14.25	K)	kJ/m²- 75 48	3100 2442	(26) (27) (27) (27) (27) (3.5) (28) (2.24) (29)
ELEMENT Doors Windows Type Windows Type Windows Type Floor Walls Roof	Gros area e 1 e 2 e 3 65.9	ss (m²)	Openin m	gs 1 ²	A ,r 2.05 4.76 3 5.22 41.38 50.88 41.38	m ²	W/m2 1.1 /[1/(1.2)+ /[1/(1.5)+ 0.12	eK = 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = =	(W// 2.255 5.45 3.44 7.39 4.9656	K)	kJ/m²-	K I	(26) (27) (27) (27) (27) 3.5 (28) 2.24 (29) 42 (30)
ELEMENT Doors Windows Type Windows Type Windows Type Floor Walls Roof Total area of e	Gros area e 1 e 2 e 3 65.9	ss (m²)	Openin m	gs 1 ²	A ,r 2.05 4.76 3 5.22 41.38 50.88 148.6	m ²	W/m2 1.1 /[1/(1.2)+ /[1/(1.5)+ 0.12 0.28 0.11	2K = 0.04] = 0.04] = = = =	(W// 2.255 5.45 3.44 7.39 4.9656 14.25	K)	75 48 9	310; 2442 372	(26) (27) (27) (27) (27) (3.5) (28) (2.24) (29) (42) (30) (31)
ELEMENT Doors Windows Type Windows Type Windows Type Floor Walls Roof Total area of e	Gros area e 1 e 2 e 3 65.9 41.3	ss (m²)	Openin m	gs 1 ²	A ,r 2.05 4.76 3 5.22 41.38 41.38 148.6 65.48	m ²	W/m ² 1.1 /[1/(1.2)+ /[1/(1.5)+ 0.12 0.28	eK = 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = =	(W// 2.255 5.45 3.44 7.39 4.9656 14.25	K)	75 48 9	310 2442 372	(26) (27) (27) (27) (27) (3.5) (28) (2.24) (29) (32) (31) (32)
ELEMENT Doors Windows Type Windows Type Windows Type Floor Walls Roof Total area of e Party wall Internal wall ***	Gros area e 1 e 2 e 3 65.9 41.3	ss (m²)	Openin m	gs 1 ²	A ,r 2.05 4.76 3 5.22 41.38 50.88 41.38 148.6 65.49 137.0	m ²	W/m2 1.1 /[1/(1.2)+ /[1/(1.5)+ 0.12 0.28 0.11	2K = 0.04] = 0.04] = = = =	(W// 2.255 5.45 3.44 7.39 4.9656 14.25	K)	75 48 9 48 9	310 2442 372 314 1233	(26) (27) (27) (27) (27) (3.5) (28) (2.24) (29) (42) (30) (31) (1.6) (32) (3.09) (32c)
ELEMENT Doors Windows Type Windows Type Windows Type Floor Walls Roof Total area of e Party wall Internal wall *** Internal floor	Gros area e 1 e 2 e 3 65.9 41.3 elements	ss (m²)	Openin m	gs 1 ²	A ,r 2.05 4.76 3 5.22 41.38 41.38 148.6 65.49 137.0 41.38	m ²	W/m2 1.1 /[1/(1.2)+ /[1/(1.5)+ 0.12 0.28 0.11	2K = 0.04] = 0.04] = = = =	(W// 2.255 5.45 3.44 7.39 4.9656 14.25	K)	75 48 9 48 9	310: 2442 372 314 1233 744	(26) (27) (27) (27) (27) (3.5) (28) (2.24) (29) (42) (30) (31) (1.6) (32) (3.09) (32c) (84) (32d)
ELEMENT Doors Windows Type Windows Type Windows Type Floor Walls Roof Total area of e Party wall Internal wall ** Internal floor Internal ceiling	Gros area e 1 e 2 e 3 65.9 41.3 elements	91 38 38 5, m ²	Openin m	gs n²	A ,r 2.05 4.76 3 5.22 41.38 41.38 148.6 65.48 41.38 41.38	m ²	W/m2 1.1 /[1/(1.2)+ /[1/(1.5)+ 0.12 0.28 0.11	EK = 0.04] = 0.04] = 0.04] = = = =	(W// 2.255 5.45 3.44 7.39 4.9656 14.25 4.55	K)	75 48 9 48 9	310 2442 372 314 1233 744 372	(26) (27) (27) (27) (27) (3.5) (28) (2.24) (29) (42) (30) (31) (1.6) (32) (3.09) (32c) (84) (32d)
ELEMENT Doors Windows Type Windows Type Windows Type Floor Walls Roof Total area of e Party wall Internal wall *** Internal floor	Gros area e 1 e 2 e 3 65.9 41.3 elements	91 38 5, m ²	Openin m 15.00 0	indow U-ve	A ,r 2.05 4.76 3 5.22 41.38 41.38 148.6 65.49 41.38 41.38 41.38 alue calcul	m ²	W/m2 1.1 /[1/(1.2)+ /[1/(1.5)+ 0.12 0.28 0.11	EK = 0.04] = 0.04] = 0.04] = = = =	(W// 2.255 5.45 3.44 7.39 4.9656 14.25 4.55	K)	75 48 9 48 9	310 2442 372 314 1233 744 372	(26) (27) (27) (27) (27) (3.5) (28) (2.24) (29) (42) (30) (31) (1.6) (32) (3.09) (32c) (84) (32d)
ELEMENT Doors Windows Type Windows Type Windows Type Floor Walls Roof Total area of e Party wall Internal wall ** Internal floor Internal ceiling * for windows and	Gros area e 1 e 2 e 3 65.9 41.3 elements *	ess (m²) 91 38 5, m²	Openin m 15.0: 0	indow U-ve	A ,r 2.05 4.76 3 5.22 41.38 41.38 148.6 65.49 41.38 41.38 41.38 alue calcul	m ²	W/m2 1.1 /[1/(1.2)+ /[1/(1.5)+ 0.12 0.28 0.11	2K = 0.04 = 0.04 = 0.04 = = = =	(W// 2.255 5.45 3.44 7.39 4.9656 14.25 4.55	K)	75 48 9 48 9	310 2442 372 314 1233 744 372	(26) (27) (27) (27) (27) (3.5) (28) (2.24) (29) (42) (30) (31) (1.6) (32) (3.09) (32c) (84) (32d)
ELEMENT Doors Windows Type Windows Type Windows Type Floor Walls Roof Total area of e Party wall Internal wall ** Internal floor Internal ceiling * for windows and ** include the are	Gros area e 1 e 2 e 3 65.9 41.3 elements a droof wind as on both	oss (m²) 1000 (m²) 1000 (m²) 1000 (m²) 1000 (m²) 1000 (m²) 1000 (m²)	Openin m 15.0: 0	indow U-ve	A ,r 2.05 4.76 3 5.22 41.38 41.38 148.6 65.49 41.38 41.38 41.38 alue calcul	m ²	W/m2 1.1 /[1/(1.2)+ /[1/(1.5)+ 0.12 0.28 0.11 0	2K = 0.04 = 0.04 = 0.04 = = = = = = = = = =	(W// 2.255 5.45 3.44 7.39 4.9656 14.25 4.55	K)	75 48 9 48 9 18 9	310 2442 372 314 1233 744 372	(26) (27) (27) (27) (27) (3.5) (28) (2.24) (29) (42) (30) (31) (1.6) (32) (3.09) (32c) (84) (32d) (42) (32e)
ELEMENT Doors Windows Type Windows Type Windows Type Floor Walls Roof Total area of e Party wall Internal wall ** Internal floor Internal ceiling * for windows and ** include the are Fabric heat los	Gros area e 1 e 2 e 3 65.9 41.3 elements * d roof wind as on both ss, W/K: Cm = Si	ows, use en sides of interest (A x k)	Openin m 15.00 0 effective winternal wall U)	indow U-va	A ,r 2.05 4.76 3 5.22 41.38 50.88 41.38 148.6 65.49 41.38 41.38 41.38 alue calculations	m ²	W/m2 1.1 /[1/(1.2)+ /[1/(1.5)+ 0.12 0.28 0.11 0	2K = 0.04] = 0.04] = 0.04] = = = = = = = ((28).	(W// 2.255 5.45 3.44 7.39 4.9656 14.25 4.55	K)	75 48 9 48 9 18 9	310: 2442 372 314 1233 744 372 13.2	(26) (27) (27) (27) (3.5) (28) (2.24) (29) (42) (30) (31) (1.6) (32) (3.09) (32c) (84) (32d) (42) (32e)

aan ha waad inata	ad of a do	toiled color	ulation										
can be used instead Thermal bridge				usina Ar	nendix l	K						6.42	(36)
if details of therma					-							6.42	(30)
Total fabric he	0 0		(00)		• /			(33) +	(36) =			48.71	(37)
Ventilation hea	at loss ca	alculated	d monthly	y				(38)m	= 0.33 × ((25)m x (5))		_
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m= 39.84	39.59	39.36	38.24	38.03	37.06	37.06	36.88	37.43	38.03	38.45	38.9		(38)
Heat transfer of	coefficier	nt, W/K	-	-	-	-		(39)m	= (37) + (38)m			
(39)m= 88.55	88.3	88.07	86.95	86.74	85.77	85.77	85.59	86.14	86.74	87.16	87.6		
Heat loss para	meter (H	HLP), W/	/m²K			-			Average = = (39)m ÷		12 /12=	86.95	(39)
(40)m= 1.07	1.07	1.06	1.05	1.05	1.04	1.04	1.03	1.04	1.05	1.05	1.06		
Number of day	e in moi	oth (Tab	lo 1a)						Average =	Sum(40) ₁	12 /12=	1.05	(40)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
			ı	ı	I.							ı	
4. Water heat	ting ene	rgy requi	irement:								kWh/y	ear:	
Assumed occu					(=		\ 0\1		10		.51]	(42)
if TFA > 13.9 if TFA £ 13.9		+ 1.76 x	[1 - exp	(-0.0003	849 x (TI	-A -13.9)2)] + 0.0)013 x (ΓFA -13.	.9)			
Annual averag	e hot wa										3.89]	(43)
Reduce the annua not more that 125	_				_	_	to achieve	a water us	se target o	f		•	
Jan	Feb	Mar		<u> </u>	Jun	Jul	L	Sep	Oct	Nov	Dec	l	
Hot water usage ii			Apr ach month	May Vd,m = fa			Aug (43)	Sep	Oct	INOV	Dec]	
(44)m= 103.28	99.52	95.76	92.01	88.25	84.5	84.5	88.25	92.01	95.76	99.52	103.28]	
. ,		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		I Total = Su	n(44) ₁₁₂ :	<u>-</u>	1126.65	(44)
Energy content of	hot water	used - cal	culated m	onthly $= 4$.	190 x Vd,r	n x nm x E	OTm / 3600) kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m= 153.16	133.95	138.22	120.51	115.63	99.78	92.46	106.1	107.37	125.13	136.59	148.32		_
If instantaneous w	vater heati	na at noint	of use (no	n hot water	r storage)	enter () in	hoxes (46		Total = Su	m(45) ₁₁₂ :	=	1477.21	(45)
(46)m= 22.97	20.09	20.73	18.08	17.34	14.97	13.87	15.92	16.11	18.77	20.49	22.25	1	(46)
Water storage	l	20.73	10.00	17.34	14.91	13.07	13.92	10.11	10.77	20.49	22.25	J	(40)
Storage volum	e (litres)	includin	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If community h	_			_			` '						
Otherwise if no		hot wate	er (this in	ncludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
Water storage a) If manufact		aclared l	nee facti	nr is kna	wn (k\//k	n/day)·					0	1	(48)
Temperature fa				JI 13 KI10	wii (ikwi	i/day).					0]]	(49)
Energy lost fro				ear			(48) x (49)) =			0]]	(50)
b) If manufact		_	-		or is not	known:	(10) X (40)	, –			U	I	(30)
Hot water stora	•			le 2 (kW	h/litre/da	ay)					0		(51)
If community he Volume factor	-		on 4.3									1	(50)
Temperature factor			2b							-	0		(52) (53)
- 4-2-3-3-3-1			-									J	(55)

Energy lost from water s	storage, kW	n/year			(47) x (51)) x (52) x (53) =		0		(54)
Enter (50) or (54) in (55	5)								0		(55)
Water storage loss calc	ulated for ea	ch month			((56)m = ($(55) \times (41)$ r	m				
(56)m= 0 0	0 0	0	0	0	0	0	0	0	0		(56)
If cylinder contains dedicated	solar storage,	57)m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m= 0 0	0 0	0	0	0	0	0	0	0	0		(57)
Primary circuit loss (ann	nual) from Ta	ıble 3							0		(58)
Primary circuit loss calc	ulated for ea	ch month	(59)m =	(58) ÷ 36	65 × (41)	m					
(modified by factor fro	om Table H5	if there is	solar wa	ter heati	ng and a	cylinde	r thermo	stat)			
(59)m= 0 0	0 0	0	0	0	0	0	0	0	0		(59)
Combi loss calculated for	or each mor	th (61)m =	(60) ÷ 3	65 × (41)m						
(61)m= 14.12 12.75	14.07 13.	8 14	13.52	13.94	13.98	13.55	14.04	13.64	14.11		(61)
Total heat required for v	vater heatin	calculated	d for eac	h month	(62)m =	0.85 × (45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 167.28 146.7	152.3 134	09 129.63	113.3	106.4	120.08	120.92	139.17	150.22	162.44		(62)
Solar DHW input calculated u	sing Appendix	G or Appendi	x H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)	•	
(add additional lines if F	GHRS and/	or WWHRS	S applies	, see Ap	pendix (3)					
(63)m= 0 0	0 0	0	0	0	0	0	0	0	0		(63)
Output from water heate	er		-	-	-	-		-	-		
(64)m= 167.28 146.7	152.3 134	09 129.63	113.3	106.4	120.08	120.92	139.17	150.22	162.44		
	•	•		•	Outp	out from wa	ater heate	r (annual)₁	12	1642.52	(64)
Heat gains from water h	neating, kWh	month 0.2	5 ′ [0.85	× (45)m	+ (61)m	n1 + 0 8 x	[(46)m	+ (57)m	+ (59)m	1	
				74 (10)	. (0.)	.,	ι (ιο)	. (0.)	. (55)]	
(65)m= 54.46 47.72	49.48 43.4	6 41.95	36.56	34.23	38.77	39.09	45.12	48.82	52.85	, 	(65)
(65)m= 54.46 47.72 include (57)m in calcu	l		36.56	34.23	38.77	39.09	45.12	48.82	52.85		(65)
	ulation of (6)m only if o	36.56	34.23	38.77	39.09	45.12	48.82	52.85		(65)
include (57)m in calcu 5. Internal gains (see	ulation of (69 Table 5 and)m only if o	36.56	34.23	38.77	39.09	45.12	48.82	52.85		(65)
include (57)m in calcu	ulation of (69 Table 5 and)m only if o	36.56	34.23	38.77	39.09	45.12	48.82	52.85		(65)
include (57)m in calcu 5. Internal gains (see Metabolic gains (Table 9) Jan Feb	ulation of (65 Table 5 and 5), Watts)m only if one of the	36.56 cylinder i	34.23 s in the 0	38.77 dwelling	39.09 or hot w	45.12 ater is fr	48.82 om com	52.85 munity h		(65)
include (57)m in calcutations. 5. Internal gains (see Metabolic gains (Table Gains	Table 5 and 5), Watts Mar A 150.79 150	or May 150.79	36.56 cylinder i Jun 150.79	34.23 s in the (38.77 dwelling Aug 150.79	39.09 or hot w Sep 150.79	45.12 ater is fr	48.82 om com	52.85 munity h		
include (57)m in calcu 5. Internal gains (see Metabolic gains (Table 9) Jan Feb	Table 5 and 5), Watts Mar A 150.79 150	or May 150.79 lix L, equat	36.56 cylinder i Jun 150.79	34.23 s in the (38.77 dwelling Aug 150.79	39.09 or hot w Sep 150.79	45.12 ater is fr	48.82 om com	52.85 munity h		
include (57)m in calculate (57)m	Table 5 and 5), Watts Mar A 150.79 150 ed in Appenda 37.96 28.	or May 150.79 lix L, equat 4 21.48	Jun 150.79 tion L9 o	34.23 s in the o Jul 150.79 r L9a), a	38.77 dwelling Aug 150.79 lso see 25.47	39.09 or hot w Sep 150.79 Table 5 34.19	45.12 ater is fr Oct 150.79	48.82 om com Nov 150.79	52.85 munity h		(66)
include (57)m in calculate 5. Internal gains (see Metabolic gains (Table of Samuel S	Jation of (65) Table 5 and 5), Watts Mar A 150.79 150 ed in Append 37.96 28.	or May 79 150.79 lix L, equat 4 21.48 endix L, ec	Jun 150.79 tion L9 o 18.14 quation L	Jul 150.79 r L9a), a 19.6	38.77 dwelling Aug 150.79 lso see 25.47 3a), also	39.09 or hot w Sep 150.79 Table 5 34.19 o see Tal	45.12 ater is fr Oct 150.79 43.41 ble 5	48.82 om com Nov 150.79	52.85 munity h		(66)
include (57)m in calculate 5. Internal gains (see Metabolic gains (Table of Samuel S	Jation of (65) Table 5 and 5), Watts Mar A 150.79 150 ed in Appenda 37.96 28. Jated in Appenda 330.69 311	or May 150.79 lix L, equat 21.48 endix L, ec 28 288.37	Jun 150.79 tion L9 o 18.14 quation L 266.18	34.23 s in the o Jul 150.79 r L9a), a 19.6 13 or L1 251.36	38.77 dwelling Aug 150.79 lso see 25.47 3a), also 247.87	39.09 or hot w Sep 150.79 Table 5 34.19 o see Tal 256.66	45.12 ater is fr Oct 150.79 43.41 ble 5 275.36	48.82 om com Nov 150.79	52.85 munity h		(66) (67)
include (57)m in calculate 5. Internal gains (see Metabolic gains (Table 9 Jan Feb (66)m= 150.79 150.79 Lighting gains (calculate (67)m= 52.55 46.68 Appliances gains (calculate (68)m= 335.99 339.47 Cooking gains (calculate	Julation of (65) Table 5 and 5), Watts Mar A 150.79 150 ed in Appendicated in	m only if on the state of the s	Jun 150.79 tion L9 o 18.14 quation L 266.18	34.23 s in the o Jul 150.79 r L9a), a 19.6 13 or L1 251.36 or L15a	38.77 dwelling Aug 150.79 lso see 25.47 3a), also 247.87	39.09 or hot w Sep 150.79 Table 5 34.19 o see Tal 256.66 ee Table	45.12 ater is fr Oct 150.79 43.41 ole 5 275.36 5	48.82 om com Nov 150.79 50.67	52.85 munity h		(66) (67) (68)
include (57)m in calculate 5. Internal gains (see Metabolic gains (Table of State	Jation of (65) Table 5 and 5), Watts Mar A 150.79 150 ed in Appendance i	or May 150.79 lix L, equal 21.48 endix L, equal 288.37 dix L, equal	Jun 150.79 tion L9 o 18.14 quation L 266.18	34.23 s in the o Jul 150.79 r L9a), a 19.6 13 or L1 251.36	38.77 dwelling Aug 150.79 lso see 25.47 3a), also 247.87	39.09 or hot w Sep 150.79 Table 5 34.19 o see Tal 256.66	45.12 ater is fr Oct 150.79 43.41 ble 5 275.36	48.82 om com Nov 150.79	52.85 munity h		(66) (67)
include (57)m in calculate 5. Internal gains (see Metabolic gains (Table of State	Mar A 150.79 150 ed in Appenda 37.96 28. llated in Appenda 330.69 311 ed in Appenda 52.59 52.59 52.59	or May 150.79 lix L, equal 21.48 endix L, ec 98 288.37 dix L, equal 9 52.59	Jun 150.79 tion L9 o 18.14 quation L 266.18 tion L15 52.59	34.23 s in the of Jul 150.79 r L9a), a 19.6 13 or L1 251.36 or L15a; 52.59	38.77 dwelling Aug 150.79 lso see 25.47 3a), also 247.87), also se 52.59	39.09 or hot w Sep 150.79 Table 5 34.19 o see Tal 256.66 ee Table 52.59	45.12 ater is fr Oct 150.79 43.41 ble 5 275.36 5 52.59	48.82 om com Nov 150.79 50.67	52.85 munity h Dec 150.79 54.01 321.16		(66) (67) (68) (69)
include (57)m in calculate 5. Internal gains (see Metabolic gains (Table of State	Sample Color Color	or May 79 150.79 lix L, equate 4 21.48 endix L, ec 98 288.37 dix L, equate 9 52.59	Jun 150.79 tion L9 o 18.14 quation L 266.18 tion L15 52.59	34.23 s in the o Jul 150.79 r L9a), a 19.6 13 or L1 251.36 or L15a	38.77 dwelling Aug 150.79 lso see 25.47 3a), also 247.87	39.09 or hot w Sep 150.79 Table 5 34.19 o see Tal 256.66 ee Table	45.12 ater is fr Oct 150.79 43.41 ole 5 275.36 5	48.82 om com Nov 150.79 50.67	52.85 munity h		(66) (67) (68)
include (57)m in calculate (58)m= 52.59 52.59 Pumps and fans gains (70)m= 3 3 Losses e.g. evaporation	Value Color Color	or May 79 150.79 lix L, equat 4 21.48 endix L, ec 98 288.37 dix L, equat 9 52.59 3 alues) (Tab	Jun 150.79 tion L9 o 18.14 uation L 266.18 tion L15 52.59	34.23 s in the of Jul 150.79 r L9a), a 19.6 13 or L1 251.36 or L15a 52.59	38.77 dwelling Aug 150.79 lso see 25.47 3a), also 247.87), also se 52.59	39.09 or hot w Sep 150.79 Table 5 34.19 o see Tal 256.66 ee Table 52.59	45.12 ater is fr Oct 150.79 43.41 ble 5 275.36 5 52.59	48.82 om com Nov 150.79 50.67 298.97	52.85 munity h Dec 150.79 54.01 321.16 52.59		(66) (67) (68) (69) (70)
include (57)m in calculate 5. Internal gains (see Metabolic gains (Table of Samuel 150.79) Lighting gains (calculate (67)m= 52.55 46.68) Appliances gains (calculate (68)m= 335.99 339.47) Cooking gains (calculate (69)m= 52.59 52.59) Pumps and fans gains (70)m= 3 3 Losses e.g. evaporation (71)m= -100.53 -100.53	Mar A 150.79 150 ed in Appenda 37.96 28. llated in Appenda 330.69 311 ed in Appenda 52.59 52. (Table 5a) 3 3 n (negative vector)	or May 79 150.79 lix L, equat 4 21.48 endix L, ec 98 288.37 dix L, equat 9 52.59 3 alues) (Tab	Jun 150.79 tion L9 o 18.14 uation L 266.18 tion L15 52.59	34.23 s in the of Jul 150.79 r L9a), a 19.6 13 or L1 251.36 or L15a; 52.59	38.77 dwelling Aug 150.79 lso see 25.47 3a), also 247.87), also se 52.59	39.09 or hot w Sep 150.79 Table 5 34.19 o see Tal 256.66 ee Table 52.59	45.12 ater is fr Oct 150.79 43.41 ble 5 275.36 5 52.59	48.82 om com Nov 150.79 50.67	52.85 munity h Dec 150.79 54.01 321.16		(66) (67) (68) (69)
include (57)m in calculate (58)m= 52.59 52.59 Pumps and fans gains (70)m= 3 3 Losses e.g. evaporation (71)m= -100.53 -100.53	Mar A 150.79 150 ed in Appen 37.96 28. llated in Appen 52.59 52.3 (Table 5a) 3 3 n (negative v -100.53 -100 able 5)	m only if of 5a): m May m 150.79 lix L, equate lix L, eccept 288.37 lix L, equate lix	Jun 150.79 tion L9 o 18.14 quation L 266.18 tion L15 52.59 3 ole 5) -100.53	34.23 s in the of Jul 150.79 r L9a), a 19.6 13 or L1 251.36 or L15a 52.59 3 -100.53	38.77 dwelling Aug 150.79 lso see 25.47 3a), also 247.87 , also se 52.59 3	39.09 or hot w Sep 150.79 Table 5 34.19 o see Table 256.66 ee Table 52.59 3 -100.53	45.12 ater is fr Oct 150.79 43.41 ole 5 275.36 5 52.59 3	48.82 om com Nov 150.79 50.67 298.97 52.59	52.85 munity h Dec 150.79 54.01 321.16 52.59 3		(66) (67) (68) (69) (70)
include (57)m in calculate (58)m= 335.99 339.47 Cooking gains (calculate (69)m= 52.59 52.59 Pumps and fans gains (70)m= 3 3 Losses e.g. evaporation (71)m= -100.53 -100.53 Water heating gains (Talculate (72)m= 73.19 71.02	Mar A 150.79 150 ed in Appenda 37.96 28. llated in Appenda 330.69 311 ed in Appenda 52.59 52. (Table 5a) 3 3 n (negative vector)	m only if of 5a): m May 79 150.79 lix L, equate 4 21.48 endix L, eccess 288.37 dix L, equate 9 52.59 3 alues) (Table 53 -100.53	Jun 150.79 tion L9 o 18.14 juation L 266.18 tion L15 52.59 3 ole 5) -100.53	34.23 s in the of Jul 150.79 r L9a), a 19.6 13 or L1 251.36 or L15a; 52.59 3 -100.53	38.77 dwelling Aug 150.79 lso see 25.47 3a), also 247.87), also se 52.59 3 -100.53	39.09 or hot w Sep 150.79 Table 5 34.19 o see Tal 256.66 ee Table 52.59 3 -100.53	45.12 ater is fr Oct 150.79 43.41 ble 5 275.36 5 52.59 3 -100.53	48.82 om com Nov 150.79 50.67 298.97 52.59 3	52.85 munity h Dec 150.79 54.01 321.16 52.59 3 -100.53		(66) (67) (68) (69) (70)
include (57)m in calculate (58)m= 52.55 46.68 Appliances gains (calculate (69)m= 52.59 52.59 Pumps and fans gains ((70)m= 3 3 Losses e.g. evaporation (71)m= -100.53 -100.53 Water heating gains =	Section Color	m only if or 5a): m May 79	Jun 150.79 tion L9 o 18.14 uation L 266.18 tion L15 52.59 3 ole 5) -100.53	34.23 s in the of Jul 150.79 r L9a), a 19.6 13 or L1 251.36 or L15a) 52.59 3 -100.53	38.77 dwelling Aug 150.79 lso see 25.47 3a), also 247.87), also se 52.59 3 -100.53	39.09 or hot w Sep 150.79 Table 5 34.19 o see Table 52.59 3 -100.53	45.12 ater is fr Oct 150.79 43.41 ble 5 275.36 5 52.59 3 -100.53 60.64 70)m + (7	48.82 om com Nov 150.79 50.67 298.97 52.59 3 -100.53	52.85 munity h Dec 150.79 54.01 321.16 52.59 3 -100.53		(66) (67) (68) (69) (70) (71)
include (57)m in calculate (58)m= 52.55 46.68 Appliances gains (calculate (69)m= 52.59 52.59 Pumps and fans gains (70)m= 3 3 Losses e.g. evaporation (71)m= -100.53 -100.53 Water heating gains =	Mar A 150.79 150 ed in Appen 37.96 28. llated in Appen 52.59 52.3 (Table 5a) 3 3 n (negative v -100.53 -100 able 5)	m only if or 5a): m May 79	Jun 150.79 tion L9 o 18.14 juation L 266.18 tion L15 52.59 3 ole 5) -100.53	34.23 s in the of Jul 150.79 r L9a), a 19.6 13 or L1 251.36 or L15a; 52.59 3 -100.53	38.77 dwelling Aug 150.79 lso see 25.47 3a), also 247.87), also se 52.59 3 -100.53	39.09 or hot w Sep 150.79 Table 5 34.19 o see Tal 256.66 ee Table 52.59 3 -100.53	45.12 ater is fr Oct 150.79 43.41 ble 5 275.36 5 52.59 3 -100.53	48.82 om com Nov 150.79 50.67 298.97 52.59 3	52.85 munity h Dec 150.79 54.01 321.16 52.59 3 -100.53		(66) (67) (68) (69) (70)

Stroma FSAP 2012 Version: 1.0.4.23 (SAP 9.92) - http://www.stroma.com

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation: Access Factor Table 6d	-	Area m²		Flux Table 6a		g_ Table 6b	-	FF Table 6c		Gains (W)	
Northeast _{0.9x} 0.77	X	4.76	x	11.28	x	0.72	x [0.7	= [18.76	(75)
Northeast 0.9x 0.77	X	4.76	x	22.97	x	0.72	= x [0.7	= [38.18	(75)
Northeast 0.9x 0.77	X	4.76	x	41.38	X	0.72	x [0.7	<u> </u>	68.79	(75)
Northeast 0.9x 0.77	X	4.76	x	67.96	X	0.72	x [0.7	<u> </u>	112.98	(75)
Northeast 0.9x 0.77	X	4.76	x	91.35	X	0.72	x [0.7	<u> </u>	151.87	(75)
Northeast 0.9x 0.77	X	4.76	x	97.38	X	0.72	x [0.7	= [161.91	(75)
Northeast _{0.9x} 0.77	X	4.76	х	91.1	X	0.72	x	0.7	= [151.46	(75)
Northeast _{0.9x} 0.77	X	4.76	x	72.63	X	0.72	x [0.7	= [120.74	(75)
Northeast 0.9x 0.77	X	4.76	x	50.42	X	0.72	x [0.7	= [83.83	(75)
Northeast _{0.9x} 0.77	X	4.76	x	28.07	X	0.72	x [0.7	= [46.66	(75)
Northeast _{0.9x} 0.77	X	4.76	x	14.2	X	0.72	x [0.7	= [23.6	(75)
Northeast 0.9x 0.77	X	4.76	x	9.21	X	0.72	x [0.7	= [15.32	(75)
Southwest _{0.9x} 0.77	X	3	x	36.79]	0.72	x [0.7	= [38.55	(79)
Southwest _{0.9x} 0.77	X	5.22	x	36.79		0.72	x	0.7	= [67.08	(79)
Southwest _{0.9x} 0.77	X	3	х	62.67		0.72	x	0.7	= [65.67	(79)
Southwest _{0.9x} 0.77	X	5.22	х	62.67]	0.72	x	0.7	= [114.27	(79)
Southwest _{0.9x} 0.77	X	3	x	85.75]	0.72	x	0.7	= [89.85	(79)
Southwest _{0.9x} 0.77	X	5.22	х	85.75]	0.72	x [0.7	= [156.34	(79)
Southwest _{0.9x} 0.77	X	3	х	106.25]	0.72	x [0.7	= [111.33	(79)
Southwest _{0.9x} 0.77	X	5.22	x	106.25		0.72	x	0.7	= [193.72	(79)
Southwest _{0.9x} 0.77	X	3	х	119.01		0.72	x	0.7	= [124.7	(79)
Southwest _{0.9x} 0.77	X	5.22	x	119.01]	0.72	x [0.7	= [216.98	(79)
Southwest _{0.9x} 0.77	X	3	x	118.15		0.72	x	0.7	= [123.8	(79)
Southwest _{0.9x} 0.77	X	5.22	x	118.15]	0.72	x [0.7	= [215.41	(79)
Southwest _{0.9x} 0.77	X	3	x	113.91]	0.72	x	0.7	= [119.36	(79)
Southwest _{0.9x} 0.77	X	5.22	x	113.91]	0.72	x [0.7	= [207.68	(79)
Southwest _{0.9x} 0.77	X	3	x	104.39]	0.72	x [0.7	= [109.38	(79)
Southwest _{0.9x} 0.77	X	5.22	X	104.39]	0.72	x	0.7	= [190.32	(79)
Southwest _{0.9x} 0.77	X	3	x	92.85]	0.72	x [0.7	= [97.29	(79)
Southwest _{0.9x} 0.77	X	5.22	X	92.85]	0.72	x	0.7	= [169.29	(79)
Southwest _{0.9x} 0.77	X	3	X	69.27]	0.72	x [0.7	= [72.58	(79)
Southwest _{0.9x} 0.77	X	5.22	X	69.27]	0.72	x	0.7	= [126.29	(79)
Southwest _{0.9x} 0.77	X	3	X	44.07		0.72	x	0.7	= [46.18	(79)
Southwest _{0.9x} 0.77	X	5.22	X	44.07]	0.72	x [0.7	= [80.35	(79)
Southwest _{0.9x} 0.77	X	3	x	31.49]	0.72	x	0.7	= [32.99	(79)
Southwest _{0.9x} 0.77	X	5.22	x	31.49]	0.72	x	0.7	= [57.41	(79)
Solar gains in watts, calcula	$\overline{}$		$\overline{}$			n = Sum(74)m.		1			
(83)m= 124.39 218.12 314.5		418.03 493.55		01.12 478.49	420	.45 350.41	245.53	150.13	105.72		(83)
Total gains – internal and so		` 	Ť		T	77 0000	700 5	070 ::	057.50		(0.4)
(84)m= 691.98 781.15 856	·	924.97 965.6	+ 9	42.06 901.31	851	.77 801.4	730.8	673.44	657.78		(84)

7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) Utilisation factor for gains for living area, h1,m (see Table 9a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.96 0.94 0.9 0.82 0.7 0.54 0.41 0.44 0.65 0.85 0.94 0.96 0.94 0.96 0.94 0.9 0.82 0.7 0.54 0.41 0.44 0.65 0.85 0.94 0.96 0.94 0.96 0.94 0.99 0.82 0.7 0.54 0.41 0.44 0.65 0.85 0.94 0.96 0.94 0.96 0.94 0.96 0.94 0.97 0.76 0.93 0.98 0.97 0.98 0.97 0.87 0.98 0.99 0.995 0.98 0.995 0.99								
Utilisation factor for gains for living area, h1,m (see Table 9a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec								
(86)m= 0.96 0.94 0.9 0.82 0.7 0.54 0.41 0.44 0.65 0.85 0.94 0.96 (86)me Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)me 19.53 19.76 20.08 20.47 20.76 20.93 20.98 20.97 20.87 20.49 19.95 19.49 (87)me Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)me 20.03 20.03 20.04 20.04 20.05 20.05 20.05 20.05 20.04 20.04 20.03 (88)me (89)me 0.95 0.93 0.88 0.79 0.65 0.47 0.32 0.36 0.58 0.82 0.92 0.96 (88)me Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)me 18.7 18.92 19.24 19.61 19.87 20.01 20.05 20.04 19.97 19.64 19.12 18.67 Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 19.27 <								
Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 19.53 19.76 20.08 20.47 20.76 20.93 20.98 20.97 20.87 20.49 19.95 19.49 Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 20.03 20.03 20.03 20.04 20.04 20.04 20.05 20.05 20.05 20.05 20.04 20.04 20.04 20.03 Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89)m= 0.95 0.93 0.88 0.79 0.65 0.47 0.32 0.36 0.58 0.82 0.92 0.96 Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 18.7 18.92 19.24 19.61 19.87 20.01 20.05 20.04 19.97 19.64 19.12 18.67 (90) Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (92)m= 18.85 19.08 19.39 19.77 20.04 20.18 20.21 20.21 20.13 19.79 19.27 18.82 Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 18.7 18.93 19.24 19.62 19.89 20.03 20.06 20.06 19.98 19.64 19.12 18.67 (93)								
(87)m=								
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 20.03 20.03 20.03 20.04 20.04 20.04 20.05 20.05 20.05 20.05 20.04 20.04 20.04 20.03 Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89)m= 0.95 0.93 0.88 0.79 0.65 0.47 0.32 0.36 0.58 0.82 0.92 0.96 Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 18.7 18.92 19.24 19.61 19.87 20.01 20.05 20.04 19.97 19.64 19.12 18.67 (90)m= 18.85 19.08 19.39 19.77 20.04 20.18 20.21 20.21 20.21 20.13 19.79 19.27 18.82 Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 18.7 18.93 19.24 19.62 19.89 20.03 20.06 20.06 19.98 19.64 19.12 18.67								
(88)m= 20.03 20.03 20.03 20.04 20.04 20.05 20.05 20.05 20.05 20.04 20.04 20.03 (88)m= 20.03 20.03 20.04 20.04 20.04 20.05 20.05 20.05 20.05 20.04 20.04 20.03 (88)m= 20.05 20.05 20.04 20.04 20.04 20.03 (88)m= 20.05 20.05 20.04 20.05 20.04 20.04 20.05 20.05 20.04 20.05 20.05 20.04 20.05 20								
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89)m= 0.95 0.93 0.88 0.79 0.65 0.47 0.32 0.36 0.58 0.82 0.92 0.96 Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 18.7 18.92 19.24 19.61 19.87 20.01 20.05 20.04 19.97 19.64 19.12 18.67 (90) (91)m= 18.85 19.08 19.39 19.77 20.04 20.18 20.21 20.21 20.13 19.79 19.27 18.82 Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 18.7 18.93 19.24 19.62 19.89 20.03 20.06 20.06 19.98 19.64 19.12 18.67								
(89)m=								
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 18.7 18.92 19.24 19.61 19.87 20.01 20.05 20.04 19.97 19.64 19.12 18.67 (90)m= 18.7 18.92 19.24 19.61 19.87 20.01 20.05 20.04 19.97 19.64 19.12 18.67 (91) Mean internal temperature (for the whole dwelling) = fLA × T1 + (1 - fLA) × T2 (92)m= 18.85 19.08 19.39 19.77 20.04 20.18 20.21 20.21 20.13 19.79 19.27 18.82 Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 18.7 18.93 19.24 19.62 19.89 20.03 20.06 20.06 19.98 19.64 19.12 18.67								
Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$ (92)m= 18.85 19.08 19.39 19.77 20.04 20.18 20.21 20.21 20.13 19.79 19.27 18.82 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 18.7 18.93 19.24 19.62 19.89 20.03 20.06 20.06 19.98 19.64 19.12 18.67 (93)								
Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (92)m= 18.85								
(92)m= 18.85 19.08 19.39 19.77 20.04 20.18 20.21 20.21 20.13 19.79 19.27 18.82 Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 18.7 18.93 19.24 19.62 19.89 20.03 20.06 20.06 19.98 19.64 19.12 18.67								
Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 18.7 18.93 19.24 19.62 19.89 20.03 20.06 20.06 19.98 19.64 19.12 18.67 (93)								
(93)m= 18.7 18.93 19.24 19.62 19.89 20.03 20.06 20.06 19.98 19.64 19.12 18.67 (93)								
8. Space heating requirement								
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a								
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec								
Utilisation factor for gains, hm:								
(94)m= 0.94 0.91 0.86 0.78 0.64 0.47 0.32 0.36 0.58 0.8 0.91 0.95								
Useful gains, hmGm, $W = (94)m \times (84)m$								
(95)m= 649.13 711.57 739.83 718.88 622.23 444.21 292.84 307.14 462.53 585.52 611.78 622.03 (95)m= height of the following states of the following stat								
(96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2								
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m–(96)m]								
(97)m= 1275.39 1238.47 1122.29 931.99 710.01 465.65 297.13 313.39 506.42 784.5 1048 1267.27 (97)								
Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m								
(98)m= 465.93 354.08 284.55 153.44 65.3 0 0 0 148.04 314.08 480.06								
Total per year (kWh/year) = Sum(98) _{15,912} = 2265.49 (98)								
Space heating requirement in kWh/m²/year 27.37 (99								
9a. Energy requirements – Individual heating systems including micro-CHP)								
Space heating: Fraction of space heat from secondary/supplementary system 0 (20)								
Traduotro robado ligar nom seconda visupolententa visus Svsteni								
Fraction of space heat from main system(s) $(202) = 1 - (201) = 1$								
Fraction of space heat from main system(s) $ (202) = 1 - (201) = $ Fraction of total heating from main system 1 $ (204) = (202) \times [1 - (203)] = $ 1 $ (204) = (202) \times [1 - (203)] = $								
Fraction of space heat from main system(s) (202) = 1 - (201) =								

	/lay Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space heating requirement (calculated ab	— í				440.04	044.00	400.00]	
	5.3 0	0	0	0	148.04	314.08	480.06		(5.4.1)
$ (211)m = \{ [(98)m \times (204)] \} \times 100 \div (206) $ $ 514.84 391.25 314.42 169.55 72 $.16 0	0	0	0	163.58	347.05	530.45]	(211)
314.04 331.23 314.42 103.33 72	10 0			l (kWh/yea				2503.3	(211)
Space heating fuel (secondary), kWh/mor	nth				,	715,1012		2000.0](=++)
= {[(98)m x (201)] } x 100 ÷ (208)									
(215)m= 0 0 0 0 0	0 0	0	0	0	0	0	0		_
			Tota	I (kWh/yea	ar) =Sum(2	215) _{15,1012}	F	0	(215)
Water heating									
Output from water heater (calculated above	e) 9.63 113.3	106.4	120.08	120.92	139.17	150.22	162.44]	
Efficiency of water heater		100	.20.00	.20.02				87.3	(216)
· · · · · · · · · · · · · · · · · · ·	.35 87.3	87.3	87.3	87.3	88.92	89.44	89.67		(217)
Fuel for water heating, kWh/month					l	ı		<u>l</u>	
$(219)m = (64)m \times 100 \div (217)m$	0.70 1.00.70	104.00	407.55	400.54	450.54	407.00	404.45	1	
(219)m= 186.63 163.84 170.44 150.69 146	6.73 129.78	121.88	137.55 Tota	138.51 I = Sum(2	156.51 19a) =	167.96	181.15	1851.67	(219)
Annual totals			. 0.0	• • • • • • • • • • • • • • • • • •		Wh/year		kWh/year	_(219)
Space heating fuel used, main system 1								2503.3	7
Water heating fuel used								1851.67	1
Electricity for pumps, fans and electric keep									_
Liectifoldy for purifys, fails and electric keep	p-not								
central heating pump:	p-not						30]	(230c)
	p-not						30 45]	(230c) (230e)
central heating pump:	p-not		sum	of (230a).	(230g) =			75	, ,
central heating pump: boiler with a fan-assisted flue	p-not		sum	of (230a).	(230g) =				(230e) (231)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting			sum	of (230a).	(230g) =			75 371.24	(230e)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year	ns:		sum	of (230a).				371.24	(230e) (231)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting	ns: Fu		sum	of (230a).	Fuel P	rice		371.24 Fuel Cost	(230e) (231)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating system	ns: Fu kW	el /h/year	sum	of (230a).	Fuel P (Table	rice 12)	45	371.24 Fuel Cost £/year	(230e) (231) (232)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating system Space heating - main system 1	ns: Fu kW (21	/h/year	sum	of (230a).	Fuel P	rice 12)	45	371.24 Fuel Cost £/year 87.11	(230e) (231) (232) (240)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating system	ns: Fu kW (21 (21)	/h/year 1) x	sum	of (230a).	Fuel P (Table	rice 12) 8	45 x 0.01 =	371.24 Fuel Cost £/year	(230e) (231) (232) (240) (241)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating system Space heating - main system 1 Space heating - main system 2	ns: Fu kW (21 (21)	/h/year 1) x 3) x 5) x	sum	of (230a).	Fuel P (Table	rice 12) 8	x 0.01 = x 0.01 =	371.24 Fuel Cost £/year 87.11 0 0	(230e) (231) (232) (240)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating system Space heating - main system 1 Space heating - main system 2 Space heating - secondary	ns: Fu kW (21: (21:	/h/year 1) x 3) x 5) x	sum	of (230a).	Fuel P (Table	rice 12) 8	x 0.01 = x 0.01 = x 0.01 =	371.24 Fuel Cost £/year 87.11	(230e) (231) (232) (240) (241) (242)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating system Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-hot (if off-peak tariff, list each of (230a) to (230a)	rs: Fu kW (21: (21: (21: (21: (23:	/h/year 1) x 3) x 5) x 9) 1) y as app			Fuel P (Table 3.4 13. 13. 4 fuel pri	rice 12) 8 19 8 19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 = ding to	371.24 Fuel Cost £/year 87.11 0 0 64.44 9.89 Table 12a	(230e) (231) (232) (240) (241) (242) (247) (249)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating system Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-hot (if off-peak tariff, list each of (230a) to (230a) Energy for lighting	ns: Fu kW (21: (21: (21: (23: g) separately	/h/year 1) x 3) x 5) x 9) 1) y as app			Fuel P (Table 3.4 0 13. 13.	rice 12) 8 19 8 19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	371.24 Fuel Cost £/year 87.11 0 64.44 9.89 Table 12a 48.97	(230e) (231) (232) (240) (241) (242) (247) (249)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating system Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-hot (if off-peak tariff, list each of (230a) to (230a)	rns: Fu kW (21: (21: (21: (23: g) separately (23:	/h/year 1) x 3) x 5) x 9) 1) y as app 2)			Fuel P (Table 3.4 13. 13. 4 fuel pri	rice 12) 8 19 8 19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 = ding to	371.24 Fuel Cost £/year 87.11 0 0 64.44 9.89 Table 12a	(230e) (231) (232) (240) (241) (242) (247) (249)

11a. SAP rating - individual heating systems				
Energy cost deflator (Table 12)			0.42	(256)
Energy cost factor (ECF) [(255) x (25	56)] ÷ [(4) + 45.0] =		1.09	(257)
SAP rating (Section 12)			84.85	(258)
12a. CO2 emissions – Individual heating systems	s including micro-CHP			
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/yea	
Space heating (main system 1)	(211) x	0.216 =	540.71	(261)
Space heating (secondary)	(215) x	0.519 =	0	(263)
Water heating	(219) x	0.216 =	399.96	(264)
Space and water heating	(261) + (262) + (263) + (264)	=	940.67	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	38.93	(267)
Electricity for lighting	(232) x	0.519 =	192.67	(268)
Total CO2, kg/year	S	um of (265)(271) =	1172.27	(272)
CO2 emissions per m²	(2	272) ÷ (4) =	14.16	(273)
El rating (section 14)			88	(274)
13a. Primary Energy				
	Energy kWh/year	Primary factor	P. Energy kWh/year	
Space heating (main system 1)	(211) x	1.22	3054.03	(261)
Space heating (secondary)	(215) x	3.07	0	(263)
Energy for water heating	(219) x	1.22	2259.04	(264)
Space and water heating	(261) + (262) + (263) + (264)	=	5313.06	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	230.25	(267)
Electricity for lighting	(232) x	0 =	1139.7	(268)

sum of (265)...(271) =

 $(272) \div (4) =$

'Total Primary Energy

Primary energy kWh/m²/year

(272)

(273)

6683.01

80.75

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 13 January 2020

Dwelling type: Mid-terrace House

Located in: England

Region: South East England

Cross ventilation possible: Yes Number of storeys: 2

Front of dwelling faces: North East

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Calculated 137.87

Night ventilation: False Blinds, curtains, shutters: None

Ventilation rate during hot weather (ach): 8 (Windows fully open)

Summer ventilation heat loss coefficient: (P1) 537.48

Transmission heat loss coefficient: 48.7

Summer heat loss coefficient: 586.18 (P2)

Overhangs:

Orientation:	Ratio:	Z_overhangs:		
North East (Front)	0	1		
South West (Rear)	0	1		
South West (Patio)	0	1		

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
North East (Front)	1	0.9	1	0.9	(P8)
South West (Rear)	1	0.9	1	0.9	(P8)
South West (Patio)	1	0.9	1	0.9	(P8)

Orientation		Area	Flux	g _	FF	Shading	Gains
North East (Front)	0.9 x	4.76	105.45	0.72	0.7	0.9	204.92
South West (Rear)	0.9 x	3	126.97	0.72	0.7	0.9	155.5
South West (Patio)	0.9 x	5.22	126.97	0.72	0.7	0.9	270.58
						Total	631 (P3/P4)

	June	July	August
Internal gains	437.95	419.82	428.31
Total summer gains	1106.95	1050.82	986.28 (P5)
Summer gain/loss ratio	1.89	1.79	1.68 (P6)
Mean summer external temperature (South East England)	15.4	17.4	17.5
Thermal mass temperature increment	1.03	1.03	1.03
Threshold temperature	18.32	20.23	20.22 (P7)
Likelihood of high internal temperature	Not significant	Not significant	Not significant

Assessment of likelihood of high internal temperature: Not significant